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Abstract

Natural frequencies and mode shapes of non-homogeneous (deterministic and stochastic) rods and beams are studied.

The solution is based on the functional perturbation method (FPM). The frequencies and mode shapes are considered as

functionals of the non-homogeneous properties. The natural frequency and mode shape of the kth order is obtained

analytically to any desired degree of accuracy. Once the functional derivatives (with respect to the non-uniform property)

have been found, the solution for any morphology is obtained by direct integration without resolving the differential

equation. Several examples with different non-homogeneous properties are solved and compared with exact solutions as an

accuracy check. The FPM accuracy range for the frequency o and the mode shape is less than 1% even for high

heterogeneities. In the stochastic case the accuracy of the natural frequencies depends on the stochastic information used/

given, on the correlation distance (roughly the ‘‘grain size’’), on the function around which the perturbation is executed,

and on whether we are interested in the properties of o or of o2. Moreover, all frequency modes have the same response to

heterogeneity as long as their wave length is of the order of the heterogeneity’s characteristic distance. In addition, the

heterogeneity effect on the average natural frequencies is minimal for the fundamental mode, and may serve as a design

tool.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Many practical applications require knowledge of the natural frequencies and mode shapes of rods and
beams with non-uniform material and geometrical properties, such as Young’s modulus E or compliance S,
the cross section A or inertia I, and the density r. Their variation can be deterministic or stochastic. Where this
variation is random, the natural frequencies and mode shapes are random too. Different methods – exact and
approximate – for finding the natural frequencies are available in literature. Exact solutions exist only for
limited cases of non-uniformity and serve as a benchmark for the approximate ones. Analytical solutions,
albeit approximate, are important for physical insight.

A wide variety of studies are available on this subject, but only a few will be mentioned here. Eisenberger [1]
studied the vibration of (deterministic) tapered rods, Aberate [2] found exact solutions for rods and beams
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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with polynomial cross sections and inertia. For the same non-uniformities in rods, Kumar and Sujith [3] used
suitable transformations and obtained results in terms of Bessel and Neumann functions. Horgan and Chan
[4] obtained exact solutions for polynomial and exponential variations of strings, rods and membranes.
Elishakoff et al. [5] and Elishakoff and Candan [6] used the inverse method and obtained the exact
natural frequencies in rods and beams with polynomially varying material and geometrical properties.
In the stochastic case, Hoshiya and Shah [7] studied the free vibration of beams. They used the perturbation
method and obtained a mean value of the natural frequency identical to that in the deterministic free
vibration case. Recently, Ganesan and Kowda [8] studied the free vibration of composite beams. They used
the same procedure as Hoshiya and Shah [7] by taking only the first-order terms and obtained the same
result for the mean value. The current study will show the difference when more terms are taken into
account. Vaicaitis [9] considered the free vibration of beams with random characteristic and applied a two-
variable perturbation expansion, which necessitated formulation of a new problem involving slowly varying
non-uniformity. Again, only the first-order terms were taken into account. Manohar and Keane [10] studied
the vibration of stochastic rods and obtained an exact solution for a specific combination of system
parameters.

In this study the natural frequencies and mode shapes of the kth-order of non-homogeneous (deterministic
and stochastic) rods and beams are found. The solution is based on the functional perturbation method
(FPM), recently developed for bending, strength and buckling [11–13]. It permits solution of boundary value
problems with non-homogeneous properties. It is based on considering the unknown field variables (such as
frequencies and mode shapes) as functionals of the non-homogeneous properties. The FPM is applied directly
to the governing equation by functionally expanding the frequency and the mode shape in Frèchet series. The
unknown functional derivatives of the frequency and mode shape are then obtained by means of the Fredholm
Theorem and the Green Function associated with the homogenous equation. Once the functional derivatives
have been found, the solution for any morphology is obtained by direct integration without re-solving the
differential equation for each heterogeneity. In this sense the functional derivatives serve as ‘‘Green Functions
of morphology’’. The solutions are analytical, and therefore give a physical insight into the effect of the
heterogeneity of each frequency order.

Using a second-order solution, the FPM results are compared with exact solutions and its accuracy is
examined. The same functional derivatives are applied for the stochastic problems, when the average and
variance of the kth-order frequency are found analytically.
2. Mathematical notations

Some basic mathematical and statistical notations are introduced. For conciseness, we write:

UðxÞ � Ux;
dUðxÞ

dx
� Ux;x;

d2UðxÞ

dx2
� Ux;xx; etc. (1)

If U is also a functional of y, while y is a function of x1, the first functional derivative of U with respect to
yx1 reads [14]:

dU x; yxf gð Þ

dy1
� Ux;y1 , (2)

where ( ),y1 stands for ( ),yx1 etc. The notation {} denotes a functional relation and the derivative Eq. (2) is a
functional of y and a function of both x and x1. Similarly, the second functional derivative reads:

d2U x; yxf gð Þ

dyx2dyx1
� Ux;y1y2 ; etc. (3)

The Dirac operator will be used frequently in the text. Its differential definition is especially convenient [14]:

dðx� x1Þ ¼ dxx1
¼

dyx

dyx1

. (4)
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The Dirac derivative is denoted similarly:

dðyx;xÞ

dyx1
¼

dyx

dyx1

� �
;x

¼ dxx1;x. (5)

Notice the symmetry relations:

dxx1
¼ dx1x; dxx1;x ¼ �dxx1;x1 . (6)

Integrations are denoted by the convolution sign. For example, the x integration of Ux1x with f xx2
is:Z 1

0

Ux1xf xx2
dx ¼ Ux1x �

1

x¼0
f xx2

. (7)

Since [0,1] are the convolution intervals in this study, we write concisely:Z 1

0

Ux1xf xx2
dx ¼ Ux1x � f xx2

. (8)

Let yx be a stochastic function which describes some property of the rod or beam. Denote /yS, y0x and ȳ
0

x as
the statistical average, deviation and normalization (usually to some average value) of y, respectively:

y0x ¼ yx � hyi; ȳx ¼
yx

hyi
; ȳ

0

x ¼
yx � hyi
hyi

. (9)

3. Problem formulation

3.1. Longitudinally vibrating rods

The longitudinal free motion of a rod of length L, with varying cross-section Ax, density rx and elastic
modulus Ex is governed by the differential equation [15]:

AxExuxt;x

� �
;x
¼ rxAxuxt;tt. (10)

Assuming a particular solution of the form:

uxt ¼ UxTt, (11)

and substituting in Eq. (10), we obtain two uncoupled differential equations:

Tt;tt þ o2Tt ¼ 0, (12)

ExAxUx;x

� �
;x
þ L2rxAxo2Ux ¼ 0, (13)

where x in Eq. (13) is an axial coordinate normalized to the rod’s length (L), Ux the mode shape and o the
natural frequency. As an example, consider a rod with non-homogeneity Ex only. Consequently, Eq. (13)
reduces to:

Jðx;UfEg;ofEgÞ ¼ Ex;xUx;x þ ExUx;xx þ rL2o2Ux ¼ 0. (14)

Eq. (14) is a linear differential equation with non-uniform coefficients, presenting an operator J which is a
function of x and a functional of E through both U and o. The mode shapes and natural frequencies are
considered as functionals of the morphology E, since any change in E at some x1 obviously affects U and o.
Expanding functionally the natural frequency and the mode shape in a Frèchet series of increasing order, we have:

oðfEgÞ ¼ oðhEiÞ þ o;E1

��
hEi
�E01 þ

1

2
o;E1E2

����
hEi

� �E01E
0
2 þ � � � , (15)

Uðx; fEgÞ ¼ UðhEiÞ þU ;E1

��
hEi
� E01 þ

1

2
U ;E1E2

����
hEi

� �E01E
0
2 þ � � � , (16)
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where all functional derivatives are calculated at /ES. Using Eq. (9) and the shifting property of the Dirac
operator, we can also write:

E0x ¼ dxx1
� E01. (17)

Our goal is to find the two series Eqs. (15) and (16), from which we calculate the natural frequencies and
mode shapes. Expansion of J functionally about /ES leads to the series:

J x; Ef gð Þ ¼ J Eh ið Þ þ J ;E1

��
Eh i
� E01 þ

1

2
J ;E1E2

����
Eh i

� �E01E02 þ � � � ¼ 0. (18)

Since J vanishes for any heterogeneity E0x, all its derivatives vanish too, which leads to a set of successive
linear differential equations with constant coefficients:

JðhEiÞ ¼ 0; J ;E1

��
hEi
¼ 0; J ;E1E2

��
hEi
¼ 0. (19)

The first term (zero order) of Eq. (19) is the case where E ¼ /ES meaning a homogeneous rod, which yields:

JðhEiÞ ¼ U ð0Þx;xx þ b2U ð0Þx ¼ 0; b2 ¼
L2r oð0Þ

� �2
hEi

. (20)

Ux
(0) and o(0) are the mode shapes and natural frequencies for the homogeneous rod. For later convenience,

we choose to normalize Eq. (15) to o(0):

ōðfEgÞ ¼
oðfEgÞ
oð0Þ

¼ 1þ ō;E1
� E01 þ

1

2
ō;E1E2

� �E01E02 þ � � � , (21)

and Ux
(0) such that:

U ð0Þx

� �2
� 1x ¼ 1. (22)

Using the notation of Section 2, the first functional derivative of J is:

dJ

dEx1
¼ J ;E1

¼
dxx1

Ux;xx þ ExUx;xxE1
þ dxx1;xUx;x

þEx;xUx;xE1
þ rL2o2Ux;E1

þ 2rL2oo;E1
Ux

 !
¼ 0. (23)

Substitution of /ES and rearranging leads to:

U ð1Þxx1;xx þ b2U ð1Þxx1
¼ f ð1Þxx1

, (24)

where

U ð1Þxx1
� Ux;E1

���
hEi
; oð1Þx1

� o;E1

���
hEi

, (25)

f ð1Þxx1
¼ �

1

hEi
dxx1

U ð0Þx;xx þ dxx1;xU ð0Þx;x þ 2rL2oð0Þoð1Þx1
U ð0Þx

� �
. (26)

Eq. (24) is a non-homogeneous linear differential equation for U ð1Þxx1
(first functional derivative of U). The left-

hand part is identical to the homogeneous equation and the right-hand part contains known functions of x

(U ð0Þx ; dxx1
and their derivatives), and the unknown function of x1 ðoð1Þx1

Þ. Following Fredholm’s Theorem [16],
Eq. (24) has a non-trivial solution if and only if:

f ð1Þxx1
�U ð0Þx ¼ 0. (27)

Using Eqs. (27) and (22), oð1Þx1
can be extracted as:

ōð1Þx1
¼

U ð0Þx1;x1

� �2
2hEib2

. (28)

Evidently, Eq. (28) depends on ‘‘homogeneous terms’’ only and is independent of the heterogeneous
morphology. Hence, the second term in the frequency series Eq. (21) can be found by integrating Eq. (28) with
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respect to E01:

oð1Þx1
� E01. (29)

To solve Eq. (24), f ð1Þxx1
is convoluted with the Green Function associated with the homogeneous equation

(Eq. (20)). The Green Function is obtainable whenever an exact solution for the homogeneous case is available.
The Modified Green Function is used here [17], which is continuous and satisfies the consistency condition, the
rod’s boundary conditions and the equation:

Gxx;xx þ b2Gxx ¼ dxx �U ð0Þx U
ð0Þ
x . (30)

The coordinate x is a point along the rod where the singular load is applied. Solving Eq. (30) yields G with an
arbitrary constant. Choosing a particular modified Green Function such that:

Gxx �U ð0Þx ¼ 0, (31)

we have in addition a symmetric G with respect to its variables (x,x). Thus, using Eq. (22) and the condition (31),
the solution for Eq. (24) is:

U ð1Þxx1
¼ Gxx � f

ð1Þ
xx1
¼

U ð0Þx1;x1
Gx1;x;x1

hEi
. (32)

The second term in Eq. (16) is therefore:

U ð1Þxx1
� E01. (33)

The second functional derivative of J is:

d2J

dEx2
dEx1

¼ J ;E1E2

2dxx1
Ux;xxE2

þ ExUx;xxE1E2

þ2dxx1;xUx;xE2
þ Ex;xUx;xE1E2

þrL2
4oo;E1

Ux;E2
þ o2Ux;E1E2

þ2o;E1
o;E2

Ux þ 2oo;E1E2
Ux

 !
0
BBBBB@

1
CCCCCA ¼ 0. (34)

Substituting /ES in Eq. (34) and rearranging we have:

U ð2Þxx1x2;xx þ b2U ð2Þxx1x2
¼ f ð2Þxx1x2

, (35)

where

U 2ð Þ
xx1x2

� 1
2
Ux;E1E2

���
Eh i
; o 2ð Þ

x1x2
�

1

2
o; E1E2

����
Eh i

, (36)

f ð2Þxx1x2
¼ �

1

hEi

dxx1
U 1ð Þ

xx2;xx þ dxx1;xU 1ð Þ
xx2;x

þrL2
2o 0ð Þo 1ð Þ

x1
U 1ð Þ

xx2
þ o 1ð Þ

x1
o 1ð Þ

x2
U 0ð Þ

x

þ2o 0ð Þo 2ð Þ
x1x2

U 0ð Þ
x

0
@

1
A

0
BBB@

1
CCCA ¼ 0. (37)

In order to find oð2Þx1x2
we use again the Fredholm Theorem:

f ð2Þxx1x2
�U ð0Þx ¼ 0. (38)

Using Eqs. (38) and (22) we obtain:

ōð2Þx1x2
¼

1

2

U ð1Þx1x2;x1
U ð0Þx1;x1

hEib2
� ōð1Þx1

ōð1Þx2

 !
. (39)
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Substitution of Eqs. (28) and (32) in Eq. (39) yields finally:

ōð2Þx1x2
¼

U ð0Þx2;x2
U ð0Þx1;x1

8hEi2b2
4Gx2x1;x2x1

�
U ð0Þx2;x2

U ð0Þx1;x1

b2

 !
. (40)

The third term in Eq. (21) can be found by integrating Eq. (40) with respect to E01E
0
2:

oð2Þx1x2
� �E 01E

0
2. (41)

Convoluting f ð2Þxx1x2
with the Green Function calculated once for the first perturbation order, the solution for

Eq. (35) is obtained as:

U ð2Þxx1x2
¼ Gxx

1

�

x ¼ 0

f
ð2Þ
xx1x2

¼
1

hEi

Gx1x;x2U ð1Þx1x2;x1

�2b2 Eh iōð1Þx1
Gxx �U

ð1Þ
xx2

� �
0
@

1
A. (42)

Substitution of Eqs. (28) and (32) in Eq. (42) yields the final term:

U ð2Þxx1x2
¼

U ð0Þx2;x2

hEi2
Gx1x;x2Gx2x1;x2x1

� 2U ð0Þx1;x1
Gxx � Gxx2

� �
;x2

� �
. (43)

The third term for the mode shape series Eq. (16) will be:

U ð2Þxx1x2
� �E01E

0
2. (44)

It can be seen that the functional derivatives of the o and U depend on homogeneous solutions and are
independent of the heterogeneous morphology. Furthermore, these derivatives are generic results of solving each
order perturbation and do not depend on prescribed shape functions. Therefore, the solution for any morphology
is obtained by integrating the derivatives with respect to the relevant heterogeneity. In this sense the functional
derivatives serve as ‘‘Green Functions of morphology’’. Once the functional derivatives (with respect to the non-
uniform property) have been found, the solution for any morphology is obtained by direct integration without re-
solving the differential equation for each type of heterogeneity separately.

3.2. Transversely vibrating beams

The static equation of a transversely vibrating beam with length L, stiffness Kx ¼ EIx and mass per unit
length mx is governed by the following differential equation [15]:

KxUx;xx

� �
;xx
� o2L4mxUx ¼ 0, (45)

where x in Eq. (45) is an axial coordinate normalized to the beam’s length (L), Ux is the mode shape and o the
natural frequency. Let J be an operator such that:

J x;U K ;mf g;o K ;mf gð Þ ¼ K̄xUx;xx

� �
;xx
� b4ō2m̄xUx ¼ 0, (46)

where

K̄x ¼
Kx

hKi
; m̄x ¼

mx

hmi
; ō ¼

o
oð0Þ

; b4 ¼
hmiL4 oð0Þ

� �2
hKi

. (47)

For simpler notation, denote the vector v:

v0
i
x ¼

K 0x

m0x

( )
; vh i ¼

Kh i

mh i

( )
; i ¼ 1; 2. (48)

Expansion of J functionally about /vS leads to the series:

J x; fvgð Þ ¼ J hvið Þ þ J ;vi
1

���
hvi
� v0

i
1 þ

1

2
J
;vi
1
v
j
2

����
hvi

� �v0
i
1v
0j
2 þ � � � ¼ 0. (49)
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Since J vanishes for any v0x, all its derivatives vanish too, which leads to a set of successive linear differential
equations with constant coefficients:

J hvið Þ ¼ 0; J ;vi
1

���
hvi
¼ 0; J

;vi
1
v
j
2

����
hvi

¼ 0. (50)

The first term (zero order) of equation Eq. (50) is the homogeneous beam where v ¼/vS, which yields:

JðhviÞ ¼ U ð0Þx;xxxx � b4U ð0Þx ¼ 0. (51)

Ux
(0) and o(0) are the mode shapes and natural frequencies for the homogeneous beam. Expanding

functionally the natural frequency and the mode shape as a Frèchet about /vS, we have:

ōðfvgÞ ¼
oðfvgÞ
oð0Þ

¼ 1þ ō;vi
1

����
hvi

�v0
i
1 þ

1

2
ō
;vi
1
v
j
2

����
hvi

� �v0
i
1v
0j
2 þ � � � , (52)

Uðx; fvgÞ ¼ UðhviÞ þU ;vi
1
� v0

i
1 þ

1

2
U
;vi
1
v
j
2

� �v0
i
1v
0j
2 þ � � � . (53)

For later convenience, we choose to normalize Ux
(0) to:

U ð0Þx

� �2
� 1x ¼ 1. (54)

The first functional derivative of J is:

dJ

dvi
x1

¼ J ;vi
1
¼

K̄xUx;xx

� �
;xxK1
� b4m̄x ō2Ux

� �
;K1

K̄x Ux;xx

� �
;xxm1
� b4 m̄xō2Ux

� �
;m1

8<
:

9=
; ¼ 0. (55)

Substitution of /vS in Eq. (55) and rearranging leads to:

U
ð1Þ

xvi
1
;xxxx
� b4U ð1Þ

xvi
1

¼ f
ð1Þ

xvi
1

, (56)

where

U
1ð Þ

xvi
1

� U
x;vi

1

����
vh i

¼
Ux;K1

Ux;m1

( )�����
vh i

; o 1ð Þ

vi
1

� o;vi
1

����
vh i

o;K1

o;m1

( )�����
vh i

, (57)

f
1ð Þ

xvi
1

¼

2b4ō 1ð Þ

v1
1

U 0ð Þ
x � dxx1

U 0ð Þ
x;xx

� �
;xx

	
Kh i

b4U 0ð Þ
x dxx1

	
mh i þ 2ō 1ð Þ

v2
1

� �
8>>><
>>>:

9>>>=
>>>;
. (58)

Following the Fredholm Theorem, oð1Þv1 can be extracted as:

ōð1Þ
vi
1

¼
1

2

U ð0Þx1;x1x1

� �2	
b4hKi

� U 0ð Þ
x1

� �2	
mh i

8>>><
>>>:

9>>>=
>>>;
. (59)

To solve Eq. (56), f ð1Þxv1
is convoluted with the Green Function associated with the beam’s homogeneous

equation (Eq. (51)) . Thus, the solution of Eq. (56) is:

U
ð1Þ

xvi
1

¼ Gxx � f
ð1Þ

xvi
1

¼

�U 0ð Þ
x1;x1x1

Gx1x;x1x1

.
Kh i

b4U 0ð Þ
x1

Gx1x

.
mh i

8><
>:

9>=
>;. (60)
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The second functional derivative of J is:

J ;v1
1
v1
2
¼ K̄xUx;xx

� �
;xxK1K2

� b4m̄x ō2Ux

� �
;K1K2

, (61)

J ;v2
1
v2
2
¼ K̄xUx;xxm1m2

� b4 m̄xō2Ux

� �
;m1m2

, (62)

J ;v1
1
v2
2
¼ K̄xUx:xx

� �
;xxK1m2

� b4 m̄xō2Ux

� �
;K1m2

. (63)

Substitution of /vS in Eqs. (61)–(63) and rearranging yields:

U
ð2Þ

xvi
1
v
j
2
;xxxx
� b4U

ð2Þ

xvi
1
v
j
2

¼ f
ð2Þ

xvi
1
v
j
2

, (64)

where

U
ð2Þ

xvi
1
v
j
2

�
1

2
U

x;vi
1
v
j
2

����
hvi

; oð2Þ
vi
1
v
j
2

�
1

2
o
;vi
1
v
j
2

����
hvi

, (65)

f
ð2Þ

xv1
1
v1
2

¼ �
1

hKi
dxx1

U
1ð Þ

xv1
2
;xx

� �
;xx

þ b4
2ō 1ð Þ

v1
1

U
1ð Þ

xv1
2

þ ō 1ð Þ

v1
1

ō 1ð Þ

v1
2

U 0ð Þ
x

þ2ō 2ð Þ

v1
1
v1
2

U 0ð Þ
x

0
B@

1
CA

0
B@

1
CA, (66)

f
ð2Þ

xv2
1
v2
2

¼ b4
U 0ð Þ

x 2dxx1
ō 1ð Þ

v2
2

	
mh i þ ō 1ð Þ

v2
1

ō 1ð Þ

v2
2

þ 2ō 2ð Þ

v2
1
v2
2

� �

þ dxx1



mh i þ 2ō 1ð Þ

v2
1

� �
U

1ð Þ

xv2
2

0
BBB@

1
CCCA, (67)

f
ð2Þ

xv1
1
v2
2

¼

dxx1
U

1ð Þ

xv2
2
;xx

� �
;xx

,
2hKi � b4 2o 1ð Þ

v1
1

U
1ð Þ

xv2
2

þ dxx1
U

1ð Þ

xv1
2

	
hmi

� �

�b4U 0ð Þ
x dxx1

ō 1ð Þ

v1
2

	
mh i þ ō 1;kð Þ

v1
1

ō 1ð Þ

v2
2

þ 2ō 2ð Þ

v1
1
v2
2

� �
0
BBBB@

1
CCCCA. (68)

Using the Fredholm Theorem and Eqs. (59)–(60), the second functional derivatives of o can be extracted:

oð2Þ
v1
1
v1
2

¼ �
U 0ð Þ

x1;x1x1
U 0ð Þ

x2;x2x2

8b8hKi2
4b4Gx2x1;x2x2x1x1

þU 0ð Þ
x1;x1x1

U 0ð Þ
x2;x2x2

0
@

1
A, (69)

oð2Þ
v2
1
v2
2

¼
U 0ð Þ

x1
U 0ð Þ

x2

8 mh i2
4b4Gx2x1

� 3U 0ð Þ
x1

U 0ð Þ
x2

� �
, (70)

oð2Þ
v1
1
v2
2

¼
U 0ð Þ

x2
U 0ð Þ

x1;x1x1
b4

4hKihmi
U 0ð Þ

x2
U 0ð Þ

x1;x1x1

.
b4 � 3Gx2x1;x1x1

� �
. (71)



ARTICLE IN PRESS
S. Nachum, E. Altus / Journal of Sound and Vibration 302 (2007) 903–924 911
Using the Green Function calculated for the first perturbation order, the solution for the second functional
derivative of U is obtained as:

U
ð2Þ

xv1
1
v1
2

¼
U 0ð Þ

x2;x2x2

2hKi2

Gx1x;x1x1
Gx2x1;x2x2x1x1

� U 0ð Þ
x1;x1x1

� �2
Gxx � Gx2x;x2x2

� �
0
@

1
A, (72)

U
ð2Þ

xv2
1
v2
2

¼
b4U 0ð Þ

x2

hmi2
b4

Gx1xGx2x1

� �
� U 0ð Þ

x1

� �2
Gxx � Gx2x
� �

0
B@

1
CA�U 0ð Þ

x2
U 0ð Þ

x1
Gx1x

0
B@

1
CA, (73)

U
ð2Þ

xv1
1
v2
2

¼
U 0ð Þ

x2

hKihmi

U 0ð Þ
x1;x1x1

� �2
Gx2x

	
2

þ

Gx1x;x1x1
b4Gx2x1;x1x1

�b4 U 0ð Þ
x1;x1x1

� �2
Gxx � Gx2x
� �

0
B@

1
CA

0
BBBBBB@

1
CCCCCCA
. (74)

4. The deterministic case

In this section, the FPM solutions for the natural frequencies and mode shapes of rods and beams with
varying material and geometrical properties are compared with exact solutions for some particular cases. All
comparisons are up to the second-order approximation, namely:

oFPM ¼ oð0Þ þ oð1Þx1
� y01 þ oð2Þx1x2

� �y01y
0
2, (75)

UFPM ¼ U ð0Þx þU ð1Þxx1
� y01 þU ð2Þxx1x2

� �y01y
0
2, (76)

where y is the non-uniform property. In addition, all functional derivatives are calculated at /yS, defined as:

hyi ¼ yx � 1. (77)

In the deterministic case Eq. (77) is only one way of defining /yS. For our comparison we use the relative
error measures as:

ErrorðUÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUx �UFPMÞ

2
� 1x

U2
x � 1x

s
; ErrorðoÞ ¼

oexact � oFPM

oexact

����
����. (78)

Elishakoff [5] found exact solutions for particular cases by the inverse method, namely, finding Ex and o
such that the mode shape is a pre-selected function. Postulating Ux and Ex for a clamped–clamped (C–C) rod
as:

Ux ¼ x� 3x2 þ 2x3; Ex ¼ 3hEi
1

6
þ x� x2

� �
, (79)

where x is an axial coordinate normalized to L, the exact frequency reads:

oexact ¼
1

L

ffiffiffiffiffi
12

r

s
. (80)

Using the homogeneous values of a C–C rod (see Appendix A, Eqs. (A.1) and (A.2)) we calculate the
functional derivatives of o (Eqs. (28) and (40)). Then, integrating the first and second functional derivatives
with respect to E01 and E01E

0
2, respectively, we obtain:

oFPM ¼
45� 135ðkpÞ2 þ 157ðkpÞ4

160
ffiffiffi
3
p

kpð Þ3L
ffiffiffi
r
p , (81)
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where k is the mode number. Setting k ¼ 2 in Eq. (81) for the second mode shape, we obtain:

ErrorðoÞ ¼ 0:537%; ErrorðUÞ ¼ 1:16%. (82)

For a non-homogeneous beam, Elishakoff and Candan [6] found again, by the inverse method, closed-form
solutions to the dynamic response of a beam in which Ex is polynomial. For a simply-supported (S–S) beam
where Ux and Ex are:

Ux ¼ x� 2x3 þ x4; Ex ¼
15

53
hEi 3þ 3x� 2x2 � 2x3 þ x4
� �

, (83)

the exact fundamental frequency is:

oexact ¼
1

L

ffiffiffiffiffiffiffiffi
360

r

s
. (84)

Using the homogeneous values of an S–S beam (Eqs. (A.5) and (A.6)) we calculate the functional derivatives
of o (Eqs. (59) and (69)). Then, integrating the first and second functional derivatives with respect to E01 and
E01E

0
2, respectively, the FPM result for k ¼ 1 is:

oFPM ¼
1

23744
ffiffiffiffiffiffiffiffi
795
p

p6L
ffiffiffi
r
p

255150þ 486675p2 þ 369495p4 þ 324285p6

þ1256542p8 � 226800p5 tanh
p
2

� �0
@

1
A. (85)

The relative error for the natural frequency in this case is 0.0011%.
In addition to its high accuracy, the FPM yields solutions for any mode number—in contrast to the method

of Refs. [5,6], where new calculations are needed in order to obtain solutions for higher frequencies. Moreover,
change of the boundary conditions or of Ex in the FPM does not necessitate re-solving the problem again. All
that is need is to convolute the new morphology deviation with the functional derivatives calculated under the
new boundary conditions. For example, for a clamped free (C–F) rod with:

Ux ¼ x�
x

2
; Ex ¼

3

8
hEi 2þ 2x� x2
� �

, (86)

the exact fundamental frequency is:

oexact ¼
1

L

ffiffiffi
6

r

s
. (87)

Calculating the same functional derivatives of o (Eqs. (28) and (40)) using the homogeneous values of C–F
rod (Eqs. (A.3) and (A.4)), we obtain:

oFPM ¼
1

51840p6L
ffiffiffi
r
p

�4675840þ 4186880p� 1326245p2

þ70560p3 þ 2580p4 þ 51948p6

 !
. (88)

The relative error for the natural frequency in this case is Error(o) ¼ 0.372%.
Table 1

Relative error between the exact and FPM natural frequencies for a non-homogeneous C–C rod with variations Ax ¼ sin2(1+x) and

Ax ¼ (1+x)4

Ax ¼ sin2(1+x) Ax ¼ (1+x)4

Mode oExact oFPM Error (o) % oExact oFPM Error (o) %

1 2.9781 2.9791 0.0324 3.1334 3.2456 3.58

2 6.203 6.2039 0.013 6.2789 6.2863 0.119

3 9.3715 9.3724 0.009 9.4219 9.4198 0.0217

4 12.5265 12.5273 0.005 12.5642 12.5608 0.0273

5 15.6761 15.6767 0.004 15.7062 15.7028 0.022

6 18.823 18.8236 0.002 18.8481 18.8449 0.017
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Fig. 1. Exact mode shape and zero, first and second-order FPM mode shapes for a non-homogeneous C–C rod with Ax ¼ (1+x)4:

——, zero order: - - - - - , first order: – – – –, second order: — —, exact.

Fig. 2. Response of the FPM natural frequency for a non-homogeneous C–C rod Eq. (89) relative to the corresponding homogeneous one

Vs. mode number. Note that a corresponds to wave length heterogeneity: ––m—, a ¼ 30: - - - -~- - - - , a ¼ 55: —’—, a ¼ 90.
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Kumar and Sujith [3] used appropriate transformations to Eq. (13) with varying cross-section and constant
r and E. Analytical solutions were obtained for polynomial and sinusoidal variations in terms of Bessel and
Neumann functions. Table 1 shows the frequency relative error between the exact and FPM results for the first
6 modes, for the variations Ax ¼ sin2(1+x) and Ax ¼ (1+x)4. Although the last variation changes sixteen
times between the endpoints, this example also shows good convergence. It can be seen that since the wave
length of this particular heterogeneity is of the order of one, the first mode is the most affected relative to the
homogeneous frequency. Fig. 1 shows the convergence between the FPM and exact mode shapes
corresponding to the fourth natural frequency. It was found that for this case the FPM zero-order term
starts with Error(U) ¼ 47% and reaches Error(U) ¼ 9% when using three terms. This example demonstrates
that even for large deviations the FPM converges rapidly to the exact solution as higher orders are considered.

In order to obtain insight into the effect of heterogeneity on the frequency modes consider the variation of E

in a C–C rod:

Ex ¼ 1þ 0:1 sinð1þ axÞ, (89)

where a is a non-dimensional parameter which controls the wave length of the heterogeneity. Fig. 2 shows the
response of the FPM non-homogeneous natural frequency (calculated up to the second order), relative to its
homogeneous counterpart. It is seen that the strongest response corresponds to the mode with wave length
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equal to the heterogeneity’s characteristic distance. For example, when a ¼ 30 the heterogeneity wave length
equals 5, consequently the strongest response is obtained in the fifth mode. This result demonstrates the
possibility of identifying heterogeneity by its sensitivity to high frequency modes. The same effect is found in
the stochastic case as well.

5. The stochastic case

The strong advantage of the FPM is the ability to find for an unknown property (here, natural frequencies)
analytical solutions of statistical characteristics such as the mean and variance. The processes for finding these
values for a C–C rod and an S–S beam with a spatially varying modulus are demonstrated and the results
examined (more complicated boundary conditions can be treated similarly). Then, some results for cross
section variation in C–C rods are presented and discussed.

It is assumed that the random field is statistically homogeneous, therefore:

hyxi � hyi ¼ Constant. (90)

The variance and normalized variance of yx are:

s2y ¼ y0x
� �2D E

¼ yxð Þ
2

� 
� hyi2; s̄2y ¼

s2y
hyi2

. (91)

For a statistically homogeneous morphology, the two-point correlation function of y is defined as:

y0x1y
0
x2

D E
¼ y0x1y

0
ðx1þhÞ

D E
¼ y0x1y

0
ðx1�hÞ

D E
, (92)

where x1 and x2 are normalized axial coordinates (to L), and h is the absolute distance between them. We
define an effective ‘‘correlation length (distance)’’ l as:Z 1

0

y0xy
0
ðxþhÞ

D E
dh ¼ l y0x

� �2D E
¼ ls2y, (93)

which is the normalized spacing (to L) of a pair of points beyond which the correlation in y is small. In grainy
materials, l is linearly related to the average grain size. It is also relevant to other areas of analysis that will be
described later. The above definition of l is not unique, and other ‘‘sizes’’ can be defined. A convenient
correlation function commonly used has an exponential form:

hy0x1y
0
x2
i ¼ s2y exp �

h

l

� �
¼ s2y exp

jx2 � x1j

l

� �
. (94)

Although the FPM is not restricted to this shape only, Eq. (94) will be used throughout.

5.1. Modulus variation in rods and beams

We consider E as a statistically homogeneous random field with mean /ES and variance s2E. Averaging
Eq. (15), using the equality /E0S ¼ 0 and rearranging, an analytical expression for the natural frequency
mean is obtained as:

hoi ¼ oð0Þ þ oð2Þx1x2
� � E01E02
� 

þO E 0
3

D E� �
¼ oð0Þ þ DoþO E 0

3
D E� �

. (95)

Using Eq. (91), the natural frequency variance reads:

s2o ¼ oð1Þx1
� E01E

0
2

� 
� oð1Þx2

þO E0
3

D E� �
¼ VarðoÞ þO E0

3
D E� �

. (96)

Apparently, up to the approximation of /E03S, /oS depends on the homogeneous frequency (E ¼ /ES)
and on the second functional derivative of o convoluted with the two-point correlation (/E01E

0
2S), while s2o

depends on the first functional derivative of o convoluted twice with /E01E
0
2S. Therefore, approximations for
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the kth frequency mode are explicitly obtained once we have found the first and second functional derivatives.
It is advantageous to normalize the kth frequency variance and average by the corresponding frequency mode
of the homogeneous case:

s2o ¼
VarðoÞ

ðoð0ÞÞ2
þO E0

3
D E� �

¼ VarðōÞ þO E0
3

D E� �
,

ō0
� 
¼
hoi � oð0Þ

oð0Þ
¼ DōþO E 0

3
D E� �

. ð97Þ

Calculating the first and second functional derivatives obtained in Section 3 and using the homogeneous
solutions o(0), Ux

(0) and Gxx presented in Appendix A, we obtain for the C–C rod:

VarðōÞ ¼ cos2ðkpx1Þ � Ē
0

1Ē
0

2

� 
� cos2ðkpx2Þ, (98)

Dō ¼ cosðkpx1Þ � Ē
0

1Ē
0

2

� 
Gx2x1;x2x1

� �
� cosðkpx2Þ �

VarðōÞ
2

, (99)

and for the S–S beam:

VarðōÞ ¼ sin2ðkpx1Þ � Ē
0

1Ē
0

2

� 
� sin2ðkpx2Þ, (100)

Dō ¼ � sinðkpx1Þ � Ē
0

1Ē
0

2

� 
Gx2x1;x2x2x1x1

� �
� sinðkpx2Þ �

VarðōÞ
2

. (101)

Integration of Eqs. (98)–(101) using the two-point correlation function Eq. (94), yields analytical
approximate expressions for the normalized variance and mean of o as functions of the correlation length l.
For the C–C rod we obtain:

VarðōÞ ¼
s̄2Ee
�1=ll

4ð1þ 4ðkplÞ2Þ2

8l 1þ 2ðkplÞ2
� �2

þe1=l
3� 8lþ 20ðkplÞ2

�32ðkpÞ2l3

þ32ðkplÞ4 � 32ðkpÞ4l5

0
B@

1
CA

0
BBBBB@

1
CCCCCA, (102)

Dō ¼
s̄2Ee

�1=l

8ð1þ 4ðkplÞ2Þ3

16ðl2 þ 4ðkpÞ2l4 þ 12ðkpÞ4l6 þ 16ðkpÞ6l8

þe1=l

�4þ 11l� 4ð4þ 11ðkpÞ2Þl2 þ 88ðkpÞ2l3

�32ðkpÞ2ð2þ 5ðkpÞ2Þl4

þ240ðkpÞ4l5 � 192ð1þ ðkpÞ2ÞðkpÞ4l6

þ256ðkpÞ6l7 � 256ðkpÞ6l8Þ

0
BBBB@

1
CCCCA

0
BBBBBBB@

1
CCCCCCCA
, (103)

and for the S–S beam:

VarðōÞ ¼
�s̄2Ee

�1=ll

4ð1þ 4ðkp lÞ2Þ2
�32ðkpÞ4 þ e1=l

�3� 20ðkplÞ2

þ32ðkpÞ4ðl� 1Þ3l4

þ32ðkplÞ4 � 32ðkpÞ4l5

0
B@

1
CA

0
B@

1
CA, (104)



ARTICLE IN PRESS
S. Nachum, E. Altus / Journal of Sound and Vibration 302 (2007) 903–924916
Dō ¼
s̄2E

4ð1þ 4ðkplÞ2Þ3

8e�1=l kpð Þ4l6ð7þ 12ðkplÞ2Þ

þ
1

ð1þ 4ðkplÞ4Þ2

2þ lþ 24ðkplÞ2 þ 9ðkpÞ2l3

þ110ðkplÞ4 þ 46ðkpÞ4l5

�56ðkpÞ4l6 þ 316ðkplÞ6

þ92ðkpÞ6l7 � 96ðkpÞ6l8

þ856ðkplÞ8 � 88ðkpÞ8l9

�448ðkpÞ8l10 þ 1584ðkplÞ10

�224ðkpÞ10l11 � 768ðkpÞ10l12

þ1792ðkplÞ12 þ 128ðkpÞ12l13

�896ðkpÞ12l14 þ 2816ðkplÞ14

þ1539ðkpÞ14l15 � 1536ðkpÞ14l16

þðkplÞð1þ 4ðkplÞ2Þ3

ð1þ 4ðkplÞ4ð1þ 4lÞÞ cothðkpÞÞ

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (105)

While Hoshiya and Shah [7] and Ganesan and Shah [8] used only zero- and first-order terms and obtained
natural frequency means which are identical to those for the homogeneous case, in this study the heterogeneity
effect becomes apparent as more terms are taken into account. Eqs. (102)–(105) are plotted for different
frequency modes in Fig. 3. The logarithmic scale helps in spanning the whole range of l. Apparently, the
heterogeneity effect on the mean natural frequencies is minimal for the fundamental mode, and may serve as a
design tool. In addition, the same response to heterogeneity is observed for all modes, except for the frequency
mean at l51. It can be seen that the higher frequency modes are affected more as l decreases, which means
higher modes can ‘‘feel/see’’ the heterogeneity. Therefore, the same sensitivity to heterogeneity found in the
deterministic case is exhibited here too.

Next, we wish to examine the effect of two different correlation functions on the frequency mean. For
example, consider the function:

hE0x1E
0x2i ¼ s̄2E exp �

p
4

x2 � x1

l

� �2� �
, (106)
Fig. 3. (a) Rod’s normalized frequency variance. (b) Rod’s normalized frequency average. (c) Beam’s normalized frequency variance. (d)

Beam’s normalized frequency average: ——, k ¼ 1: - - - - - , k ¼ 2: – – – –, k ¼ 5: ——, k ¼ 10.
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Fig. 4. Rod’s fundamental frequency average calculated with the two point correlations: Eq. (94) ——, Eq. (106) – – –.
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which describes a rather smooth change in E between neighbor grains. Note that choosing a different two-
point correlation will not complicate the FPM. Eqs. (106) and (94) have the same correlation length, yet the
first has higher correlation values in the region l40.1. Consequently, as seen in Fig. 4, the rod’s fundamental
frequency mean is considerably different, especially in the region l40.1.

For better insight into the mean and variance trend, it is worth looking at two extreme values of l.

5.2. Large correlation lengths

Focusing on the range where l is very large (lb1), the two-point correlation Eq. (94) can be written as:

exp �
jx2 � x1j

l

� �
ffi 1�

jx2 � x1j

l
. (107)

Thus, when lb1 an analytical approximation can be obtained as:

VarðōÞ ffi s̄2E ōð1Þx1
� 1�

jx2 � x1j

l

� �
� ōð1Þx2

� �
, (108)

Dōffi s̄2E ōð2Þx1x2
� � 1�

jx2 � x1j

l

� �� �
. (109)

Using Eqs. (108) and (109), the approximations for Eqs. (102)–(105) are:

VarðōÞjlb1 ¼
s̄2E
4

1�
1

l
1

3
þ

3

4k2p2

� �� �
, (110)

Dōjlb1 ¼ �
s̄2E
8

1þ
1

l
2

3
�

3

4p2k2

� �� �
, (111)

VarðōÞjlb1 ¼
s̄2E
4

1þ
1

l
15

12k2p2
�

1

3

� �� �
, (112)

Dōjlb1 ¼ �
s̄2E
8

1þ
1

2l
1þ

3

ðkpÞ2

� �� �
. (113)

Physically, a perfect modulus correlation length (l-N) means highly uniform material properties or
alternatively an ensemble of rods or beams in which the modulus is homogeneous but may differ from one
realization to another. Knowing that the homogeneous frequency is proportional to the modulus square root,
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the exact normalized frequency variance and mean in this region are therefore equal to the normalized
variance and mean of the modulus square root, respectively:

hō0i ¼ h
ffiffiffiffiffi
E 0
p
i, (114)

s̄2o ¼ s̄2 ffiffiffi
E
p . (115)

This result is true for both beams and rods, and means that the frequency mean converges asymptotically to
the exact solution of a homogeneous case with Eh ¼ /OES2:

hoijl!1 ¼ ojEh
¼ ojh

ffiffiffiffi
E
p
i2. (116)

Using Taylor series for expressing Eqs. (114) and (115) in terms of statistical information on E, we obtain:

hō0i ffi �
1

8
s̄2E þO E0

3
� �

, (117)

s̄2o ffi
s̄2E
4
þO E0

3
� �

. (118)

These results are confirmed by Fig. 3 and by Eqs. (110)–(113). The results show that in this region knowing
the modulus statistical data are approximations to the frequency mean and variance. This means that the
statistical data needed for the exact frequency mean and variance are the mean and variance of OE. Therefore,
the modulus statistical data are the information needed for the exact mean and variance of the frequency
square. Denoting b ¼ o2, up to a third-order approximation of /E03S the following relations between o and
b are true:

Varðb̄Þ ¼ 4VarðōÞ, (119)

Db̄ ¼ 2Dōþ VarðōÞ. (120)

Thus, for lb1 the mean and variance of b will converge to the values:

Db̄! 0, (121)

Varðb̄Þ ! s̄2E . (122)

This shows that /bS converges asymptotically to the exact solution of a homogeneous case with Eh ¼ /ES.

5.3. Small correlation lengths

The range where l is very small (l51), means that the statistical correlation is limited to a small interval. As
l-0, all rods and beams will vibrate at the homogeneous natural frequency. Therefore, it is expected that the
frequency variance will converge to zero. To obtain an analytical result for small l, we define the small
parameter:

h ¼ jx1 � x2j, (123)

which permits Taylor expansion of Eq. (96):

s̄2o ¼ oð1Þx1
� hĒ

0

1Ē
0

2i � oð1Þx1
þ oð1Þx1;x1

hþ
1

2
oð1Þx1;x1x1

h2
þ � � �

� �
. (124)

Taking the first term of the expansion we have:

VarðoÞ ¼ oð1Þx1

� �2
� �hE 01E

0
2i. (125)

Calculating Eq. (125) for both the rods and the beams, we have:

Var oð Þ
��
l�1
ffi

3

4
ls2E . (126)
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Fig. 5. Rod’s normalized frequency average calculated by perturbation of S vs. log(l): ——, k ¼ 1: - - - - - - , k ¼ 2: – – –, k ¼ 5:

——, k ¼ 10.
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In addition, as l-0 Eqs. (103) and (105) converge to:

Dōjl!0 ¼ �
1

2
s̄2E . (127)

Eqs. (126) and (127) are not confined to the exponential case, but hold for all morphologies with the same l.
It is clear that when l-0, the effective uniform property is S ¼ 1/E. Thus, the exact solution corresponds to:

ojSh
¼ ojhSi ¼

pk

L
ffiffiffiffiffiffiffiffiffiffi
rhSi
p . (128)

Using a Taylor series for expressing /SS in terms of statistical information on E, we obtain:

hSi ¼
1

E

� �
ffi

1

hEi
1� s̄2E þ � � �
� �

. (129)

Substitution of Eq. (129) in Eq. (128) yields:

ojhSi ¼
pk

L
ffiffiffiffiffiffiffiffiffiffi
rhSi
p ffi ojhEi 1�

1

2
s̄2E

� �
. (130)

It is seen that Eq. (130) verifies the values found through Eq. (127). Hence, /SS is the information needed
for obtaining the exact solution at l-0. Fig. 5 shows a rod’s normalized frequency mean calculated through
perturbation of S on a log(l) scale. It can be seen that as l-0, the solutions for all modes converge to zero
(homogeneous frequency) as expected. Moreover, higher frequency modes are affected more as l decreases,
which means higher modes are sensitive to heterogeneity.

The above analysis demonstrates that the frequency accuracy depends on the available stochastic
information (S, E or OE), on the size of l, on the function about the perturbation is executed (E or S) and
whether o or o2 is of interest.

5.4. Effect of cross section variation in rods

Since the cross section parameter appears in both terms of the governing Eq. (13), and especially in view of
the fact that homogeneous rods with different cross sections have the same natural frequencies, it is of interest
to analyze the frequency variance and mean for varying cross section and uniform E and m. Note that Eq. (94)
is used as the two-point correlation function.

5.4.1. Variance

The normalized frequency variance plotted on a log(l) scale for the three first modes is shown in Fig. 6. This
plot is of special interest, since in it the variance is exactly symmetric about the maximum point, which is not
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the case for a linear plot. This phenomenon cannot yet be explained and is currently being studied. Fig. 6
shows also that the normalized frequency variance approaches zero at very small and very large l values for all
modes, which means convergence to the solution of a homogeneous rod. This result fits the fact that the
frequency of a homogeneous rod does not depend on the cross section. It can also be seen that the first mode
serves as an upper bound for all higher modes, a fact of great importance to the designer who only needs to
calculate the variance of the first mode, knowing that the response of all higher modes is smaller. The
maximum variance, as well as its corresponding l value, decrease as the mode number increases. This means
that for high frequency modes, no matter how strong the cross section heterogeneity, the frequency variance
will always be small. Fortunately, the maximum value of the normalized frequency variance and its
corresponding l value can be found analytically, as:

lðkÞMax ¼
1

2kp
, (131)

VarðōÞ
s̄2A

����
lðkÞ
Max

¼
expð�2kpÞ þ 2kp� 1

8k2p2
. (132)

Eq. (131) is directly related to the first cross section functional derivative through:

hAiō;A1

��
hAi
¼ cosð2pkx1Þ ¼ cos x1=l

ðkÞ
Max

� �
. (133)

It can also be seen that for higher modes (kb1) Eq. (132) reduces to:

VarðōÞ
s̄2A

����
l kð Þ
Max

!
lðkÞMax

2
. (134)

Eq. (133) brings out two important inherent characteristics of the first functional derivative. For the two-
point correlation used, it reveals the correlation length in which the frequency variance reaches its maximum.
Once the functional derivatives have been obtained, they are applicable for any morphology; thus, they act as
the heterogeneity Green Function. For example, consider the case where the cross section morphology has a
Dirac change at point x1:

A01 ¼ dxx1
, (135)

the second term (first order) in the frequency series will then obviously be the first functional derivative at
point x1:

hAiō;A1

��
hAi
� dxx1

¼ cosð2pkx1Þ � dxx1
¼ cosð2pkxÞ. (136)
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5.4.2. Mean

The normalized frequency mean which takes into account the cross section variation is shown in Fig. 7. In
contrast to the frequency variance results, we see that here the first mode is a lower bound for all higher
modes. Looking again at lb1, we see that all modes converge to zero, and coincide with the homogeneous
solution which is independent of the cross section. This fits both the physics and variance results. Moreover,
higher frequency modes (k410) reach this limit very quickly, meaning that they are less affected by
heterogeneity. This result is also supported by the frequency variance results (Fig. 6). When l-0, all modes
converge to:

Dōjl!0 ¼ �
1

2
s̄2A. (137)

Using an elementary expansion (three terms) for a homogeneous effective property (say y(A)) in terms of
cross section statistical data, it can be proved that:

Dōjhyi ffi �
1

2
s̄2A; y ¼

1ffiffiffiffi
A
p . (138)
Fig. 7. Rod’s normalized frequency average calculated by perturbation of A vs. log(l): ——, k ¼ 1: - - - - -, k ¼ 2: – – –, k ¼ 5: ——,

k ¼ 10.

Fig. 8. Rod’s normalized frequency average calculated by perturbation of A vs. log(l/k): ——, k ¼ 1: - - - - - -, k ¼ 2: – – –, k ¼ 5: ——,

k ¼ 10.
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It shows that for small values of l the important statistical data property is 1/OA. This result is in conflict
with intuition, because as l-0 there is an ensemble of rods which in effect vibrate with the same
homogeneous frequency, although the latter does not depend on the cross section. This unexplained result is
still being studied. Fig. 8 shows that when Do is plotted on a log(l/k) scale all curves converge. This result
indicates that all modes will have the same response to the cross section heterogeneity as long as the mode
wave length (k) is of the order of l.
6. Conclusions

Several important advantages of the FPM are shown:
1.
 The FPM is analytical and provides a physical insight into the effect of heterogeneity of each frequency
order.
2.
 The functional derivatives are generic results of solving each perturbation order and do not depend on
prescribed shape functions.
3.
 Once the functional derivatives have been found, the solution for any morphology is obtained by direct
integration without re-solving the differential equation for each heterogeneity separately. Therefore, the
functional derivatives serve as the Green Function for Morphology.
4.
 The same functional derivatives can be used for reliability analysis. It should be mentioned that functional
derivatives are already available as routines in commercial programs such as Mathematica.
For the deterministic case, we compared the FPM natural frequencies and mode shapes with exact solutions
for a number of non-uniformities in material and geometry. It is shown that the relative error is small even for
large variations. In addition, the natural frequencies of both the deterministic and stochastic cases are sensitive
to heterogeneity. The strongest sensitivity is observed when the frequency mode has a ‘‘wave length’’ of the
order of the heterogeneity characteristic length l.

For the stochastic case, we obtained analytical approximate solutions for the mean and variance of the
natural frequencies. The solution converges to its exact counterparts at both morphology regions l-0 and
l-N. It was also shown that the solution accuracy depends on the size of l. In addition:
1.
 The stochastic information used/given. Namely, at lb1 the stochastic information on OE is needed for
exact solution of /oS. However, in the same l region information on E is required for the exact value of
/o2S.
2.
 The frequency accuracy are strongly depends on the material property (E or S ¼ E�1) about which the
FPM is executed. It was shown how S is the appropriate property for l51 and OE is for lb1.
For future study it is important to find the natural frequencies for non-uniform 3-D structures as well as for
structures with non-negligible damping.
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Appendix A

Homogeneous natural frequencies and mode shapes and the Green Function for various boundary
conditions are introduced.
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C– C rod

U ð0Þx

��
x¼0
¼ U ð0Þx

��
x¼1
¼ 0; U ð0Þx

� �2
� 1x ¼ 1;

U ð0Þx ¼
ffiffiffi
2
p

sinðkpxÞ; b ¼ kp:
(A.1)

Gxx ¼

1

2k2p2
2kpx cosðkpxÞ sinðkpxÞ þ sinðkpxÞ

ð2kpð�1þ xÞ cosðkpxÞ � sinðkpxÞ

 !
; xox;

1

2k2p2
2kpxð�1þ xÞ cosðkpxÞ sinðkpxÞ

þ sinðkpxÞð2kp cosðkpxÞ � sinðkpxÞ

 !
; x4x:

8>>>>><
>>>>>:

(A.2)

C– F rod

U ð0Þx

��
x¼0
¼ U ð0Þx;x

��
x¼1
¼ 0; U ð0Þx

� �2
� 1x ¼ 1;

U ð0Þx ¼
ffiffiffi
2
p

sinðbxÞ; b ¼
ð2k � 1Þp

2
:

(A.3)

Gxx

4 sinðð2k � 1Þpx=2Þ2

ðp� 2kpÞ2ðcosðð2k � 1ÞpxÞ � 1Þ

�ð2k � 1Þpðx� 1Þ cosðð2k � 1Þpx=2Þ

sinðð2k � 1Þpx=2Þ þ sinðð2k � 1Þpx=2Þ

ð2k � 1Þpx cosðð2k � 1Þpx=2Þ

þ sinðð2k � 1Þpx=2Þ

 !
0
BBBB@

1
CCCCA xox

1

ðp� 2kpÞ2

2ð2k � 1Þpðx� 1Þ cosðð2k � 1Þpx=2Þ

sinðð2k � 1Þpx=2Þ þ 2 sinðð2k � 1Þpx=2Þ

ð2k � 1Þpx cosðð2k � 1Þpx=2Þ þ sinðð2k � 1Þpx=2Þ

0
B@

1
CA x4x

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A.4)

S– S beam

U ð0Þx

��
x¼0
¼ U ð0Þx;xx

��
x¼0
¼ U ð0Þx;xx

��
x¼1
¼ U ð0Þx

��
x¼1
¼ 0; U 0ð Þ

x

� �2
� 1x ¼ 1;

U ð0Þx ¼
ffiffiffi
2
p

sinðkpxÞ; b ¼ kp:
(A.5)

Gxx ¼

1

4k2p2

�2kpx cosðkpxÞ sinðkpxÞ þ ð�2kpð�1þ xÞ cosðkpxÞ

þ3 sinðkpxÞÞ sinðkpxÞ

þ2kpcschðkpÞ sinhðkpð�1þ xÞÞ sinhðkpxÞ

0
B@

1
CA; xox;

1

4k4p4

�2kpð�1þ xÞ cosðkpxÞ sinðkpxÞ

þð�2kpx cosðkpxÞ þ 3 sinðkpxÞÞ sinðkpxÞ

þ2kpcschðkpÞ sinhðkpð�1þ xÞÞ sinhðkpxÞ

0
B@

1
CA; x4x:

8>>>>>>>>><
>>>>>>>>>:

(A.6)
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