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Abstract

Natural frequencies and mode shapes of non-homogeneous (deterministic and stochastic) rods and beams are studied.
The solution is based on the functional perturbation method (FPM). The frequencies and mode shapes are considered as
functionals of the non-homogeneous properties. The natural frequency and mode shape of the kth order is obtained
analytically to any desired degree of accuracy. Once the functional derivatives (with respect to the non-uniform property)
have been found, the solution for any morphology is obtained by direct integration without resolving the differential
equation. Several examples with different non-homogeneous properties are solved and compared with exact solutions as an
accuracy check. The FPM accuracy range for the frequency @ and the mode shape is less than 1% even for high
heterogeneities. In the stochastic case the accuracy of the natural frequencies depends on the stochastic information used/
given, on the correlation distance (roughly the “grain size”), on the function around which the perturbation is executed,
and on whether we are interested in the properties of @ or of w?. Moreover, all frequency modes have the same response to
heterogeneity as long as their wave length is of the order of the heterogeneity’s characteristic distance. In addition, the
heterogeneity effect on the average natural frequencies is minimal for the fundamental mode, and may serve as a design
tool.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Many practical applications require knowledge of the natural frequencies and mode shapes of rods and
beams with non-uniform material and geometrical properties, such as Young’s modulus E or compliance .S,
the cross section A4 or inertia 7, and the density p. Their variation can be deterministic or stochastic. Where this
variation is random, the natural frequencies and mode shapes are random too. Different methods — exact and
approximate — for finding the natural frequencies are available in literature. Exact solutions exist only for
limited cases of non-uniformity and serve as a benchmark for the approximate ones. Analytical solutions,
albeit approximate, are important for physical insight.

A wide variety of studies are available on this subject, but only a few will be mentioned here. Eisenberger [1]
studied the vibration of (deterministic) tapered rods, Aberate [2] found exact solutions for rods and beams
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with polynomial cross sections and inertia. For the same non-uniformities in rods, Kumar and Sujith [3] used
suitable transformations and obtained results in terms of Bessel and Neumann functions. Horgan and Chan
[4] obtained exact solutions for polynomial and exponential variations of strings, rods and membranes.
Elishakoff et al. [5] and Elishakoff and Candan [6] used the inverse method and obtained the exact
natural frequencies in rods and beams with polynomially varying material and geometrical properties.
In the stochastic case, Hoshiya and Shah [7] studied the free vibration of beams. They used the perturbation
method and obtained a mean value of the natural frequency identical to that in the deterministic free
vibration case. Recently, Ganesan and Kowda [8] studied the free vibration of composite beams. They used
the same procedure as Hoshiya and Shah [7] by taking only the first-order terms and obtained the same
result for the mean value. The current study will show the difference when more terms are taken into
account. Vaicaitis [9] considered the free vibration of beams with random characteristic and applied a two-
variable perturbation expansion, which necessitated formulation of a new problem involving slowly varying
non-uniformity. Again, only the first-order terms were taken into account. Manohar and Keane [10] studied
the vibration of stochastic rods and obtained an exact solution for a specific combination of system
parameters.

In this study the natural frequencies and mode shapes of the kth-order of non-homogeneous (deterministic
and stochastic) rods and beams are found. The solution is based on the functional perturbation method
(FPM), recently developed for bending, strength and buckling [11-13]. It permits solution of boundary value
problems with non-homogeneous properties. It is based on considering the unknown field variables (such as
frequencies and mode shapes) as functionals of the non-homogeneous properties. The FPM is applied directly
to the governing equation by functionally expanding the frequency and the mode shape in Fréchet series. The
unknown functional derivatives of the frequency and mode shape are then obtained by means of the Fredholm
Theorem and the Green Function associated with the homogenous equation. Once the functional derivatives
have been found, the solution for any morphology is obtained by direct integration without re-solving the
differential equation for each heterogeneity. In this sense the functional derivatives serve as “Green Functions
of morphology”. The solutions are analytical, and therefore give a physical insight into the effect of the
heterogeneity of each frequency order.

Using a second-order solution, the FPM results are compared with exact solutions and its accuracy is
examined. The same functional derivatives are applied for the stochastic problems, when the average and
variance of the kth-order frequency are found analytically.

2. Mathematical notations

Some basic mathematical and statistical notations are introduced. For conciseness, we write:

dU d’U
Ux)=U,, ) = Uy, ) = U, ,,,etc. (1)
dx ’ dx? ’
If Uis also a functional of 8, while 6 is a function of x;, the first functional derivative of U with respect to

0, reads [14]:

oU(x,{0:})
5—01 = Ux,Ola ()

where (), stands for (),p,; etc. The notation {} denotes a functional relation and the derivative Eq. (2) is a
functional of 0 and a function of both x and x;. Similarly, the second functional derivative reads:

S Ux{0.)

D 00x200x, Usx.0,0,,etc. .

The Dirac operator will be used frequently in the text. Its differential definition is especially convenient [14]:
_ o0

8(X — X1) = Oy = o X

30y,
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The Dirac derivative is denoted similarly:

0(0xx) 00,
((501 - (59:1> = Oy ©)
Notice the symmetry relations:
5xx1 = 5xlx: 5xx1,x = _5xxl,xl . (6)

Integrations are denoted by the convolution sign. For example, the x integration of Uy, with f x1y is:

1
. | B,
/0 Vs syl = Usy % f oy )

Since [0,1] are the convolution intervals in this study, we write concisely:

1
/0 U\ of 1, dx = Uy x # f 1y, ®)

Let 0, be a stochastic function which describes some property of the rod or beam. Denote {0, 0. and 9; as
the statistical average, deviation and normalization (usually to some average value) of 0, respectively:
- 0 ~ 0, —(0
0, =— 0 .

0 =0,—(0), 0,=-2
=m0 o "=

©)

3. Problem formulation
3.1. Longitudinally vibrating rods

The longitudinal free motion of a rod of length L, with varying cross-section 4., density p, and elastic
modulus E, is governed by the differential equation [15]:

(AxExuxr,x) X PxAxez,zt- (10)

5

Assuming a particular solution of the form:

Uy = U, T, (11)

and substituting in Eq. (10), we obtain two uncoupled differential equations:
T+ o’ T, =0, (12)
(ExAxUsyx) .+ LPp A’ U, =0, (13)

where x in Eq. (13) is an axial coordinate normalized to the rod’s length (L), U, the mode shape and w the
natural frequency. As an example, consider a rod with non-homogeneity E, only. Consequently, Eq. (13)
reduces to:

J(x, U{E},o{E}) = E. Uyx + E, Uy + pL?0* U, = 0. (14)

Eq. (14) is a linear differential equation with non-uniform coefficients, presenting an operator J which is a
function of x and a functional of E through both U and w. The mode shapes and natural frequencies are
considered as functionals of the morphology E, since any change in E at some x; obviously affects U and w.
Expanding functionally the natural frequency and the mode shape in a Fréchet series of increasing order, we have:

xxE\Ey+ -, (15)

;1
o(E}) = 0((E)) + o5, | *E} + 50,55, .

! 1 ! !/
U(x,{E}) = U(E)) + U, |<E> * E} + 3 Uk, . **E\Ey + -, (16)
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where all functional derivatives are calculated at { E). Using Eq. (9) and the shifting property of the Dirac
operator, we can also write:
E =0y *E}. (17)
Our goal is to find the two series Egs. (15) and (16), from which we calculate the natural frequencies and

mode shapes. Expansion of J functionally about { E) leads to the series:

1 ,
JOAEY) = JOE) + J g, |y El + 5TmE| **E{E) =0, (18)
(E)

Since J vanishes for any heterogeneity ', all its derivatives vanish too, which leads to a set of successive
linear differential equations with constant coefficients:

J(E)) =0, J,E1|<E) =0, J,E]E2|<E> = 0. (19)

The first term (zero order) of Eq. (19) is the case where E = ( E) meaning a homogeneous rod, which yields:
L20(®)?

siEy = 00, + U0 =0, =220 20)

U, and o are the mode shapes and natural frequencies for the homogeneous rod. For later convenience,

we choose to normalize Eq. (15) to »®:

(Z)({E}):%: 1+ dg, * E| +%@’5152**E/1E’2+~~, (21
and U,” such that:
(U9 1, =1. (22)
Using the notation of Section 2, the first functional derivative of J is:
57 Oxx; Uxxx + Ex Uy xxg; + Oxxyx Uxx
0Ex, BT (—i—Ex,x Usr, + pL?o? Uvp, + 2,0L2a)a),El UX> =0 (23)
Substitution of ( E) and rearranging leads to:
Ul +BUS, =130 (24)
where
U, = Usry ‘<E>’ oy =0, ‘<E>’ )
s == % (S0 U0 + 0, U, 4+ 20200 U0, (26)

Eq. (24) is a non-homogeneous linear differential equation for U (YIY) (first functional derivative of U). The left-
hand part is identical to the homogeneous equation and the right-hand part contains known functions of x
(UY),8,, and their derivatives), and the unknown function of x| (wﬂcll)). Following Fredholm’s Theorem [16],

Eq. (24) has a non-trivial solution if and only if:

S xUY =0, 27)
Using Egs. (27) and (22), wg}g can be extracted as:
1) (Ug)l)’xl)2
T (28)

Evidently, Eq. (28) depends on “homogencous terms” only and is independent of the heterogeneous
morphology. Hence, the second term in the frequency series Eq. (21) can be found by integrating Eq. (28) with
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respect to E:
ol * E). (29)

To solve Eq. (24), f (Ylv)l is convoluted with the Green Function associated with the homogeneous equation
(Eq. (20)). The Green Function is obtainable whenever an exact solution for the homogeneous case is available.
The Modified Green Function is used here [17], which is continuous and satisfies the consistency condition, the
rod’s boundary conditions and the equation:

Grer + 2 Goz = 0y — UOUY. 0

The coordinate £ is a point along the rod where the singular load is applied. Solving Eq. (30) yields G with an
arbitrary constant. Choosing a particular modified Green Function such that:

Gy UY =0, @31

we have in addition a symmetric G with respect to its variables (x,£). Thus, using Eq. (22) and the condition (31),
the solution for Eq. (24) is:

UvY G, .
1 X X1,X,X]
UY, =Gy *fi”x)l = XNT (32)
The second term in Eq. (16) is therefore:

U0 s E. (33)

XX

The second functional derivative of J is:

25xx1 Ux,xxE2 + E, Ux,xxE1E2

(32.] +25xx1 X Ux,sz + Ex,x Ux,xElEz
OE.,0E, E1E, ol dow g Usg, + 0 Uy g E, (34)
+2CU’E1 w,EZ Ux + zww,ElEz UX

Substituting { E) in Eq. (34) and rearranging we have:

2 2772 —_ @

U,(/‘CX)IXQ,XX + B Ugc)zl Xy _fxxlxz’ (35)
where
1
2 _1 2 =
Uxx1x2 = fUX,ElEQ (E)’ (lex2 = Ew, E|E, (E>a (36)
1 1
(Sxxl Uﬁc.gz,xx + 5,’CX1,X Ugcx)z,x
1 0),,(1) 771 1), (1) 770

o 2000 UL, +oRoQUP | 2o, (37)

XX1Xy T 2
B LT 0,0 o
x1x2 X

In order to find w(le)xz we use again the Fredholm Theorem:
Sy ¥ U = 0. (38)

Using Egs. (38) and (22) we obtain:

1 UM U
-2 _ XXX XX S(1) 5 (1)
D¥ixy =3 ( EFE a\) o) |- (39)
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Substitution of Egs. (28) and (32) in Eq. (39) yields finally:

(0) (0) (0) 0)
(/{_)(2) = sz,xz le,xl 4G,C e — UX2,X2 le,xl ) (40)
X1Xp 8<E>2ﬁ2 X2X1,X2X] '[))2
The third term in Eq. (21) can be found by integrating Eq. (40) with respect to E)E):
o? _ xxE|E). (41)

X1X2

Convoluting fffx)lxz with the Green Function calculated once for the first perturbation order, the solution for

Eq. (35) is obtained as:

1 (1
U®  — G, o« [? I R 42)
me T e T E g may) (Gex vl |
Substitution of Egs. (28) and (32) in Eq. (42) yields the final term:
v,
2 X2,X) 0
v = G (lex,xz [ 1 4 (e Géxz)xz). 43)
The third term for the mode shape series Eq. (16) will be:
U;%glxz *+E| E). (44)

It can be seen that the functional derivatives of the w and U depend on homogeneous solutions and are
independent of the heterogeneous morphology. Furthermore, these derivatives are generic results of solving each
order perturbation and do not depend on prescribed shape functions. Therefore, the solution for any morphology
is obtained by integrating the derivatives with respect to the relevant heterogeneity. In this sense the functional
derivatives serve as ““Green Functions of morphology”. Once the functional derivatives (with respect to the non-
uniform property) have been found, the solution for any morphology is obtained by direct integration without re-
solving the differential equation for each type of heterogeneity separately.

3.2. Transversely vibrating beams

The static equation of a transversely vibrating beam with length L, stiffness K, = EI, and mass per unit
length m, is governed by the following differential equation [15]:

(KiUsi) o — 0’ L*m, U, =0, (45)

where x in Eq. (45) is an axial coordinate normalized to the beam’s length (L), U, is the mode shape and w the
natural frequency. Let J be an operator such that:

X

J(x, UK, m}, ofK,m}) = (R Uy ) = Bré*m Uy =0, (46)
where

. Koo om0 i (e®)

Kx—ﬁ, mx—<m), D =" B = ) 47)

For simpler notation, denote the vector v:

; K, (K)
V= {m, } (v) = { ) } i=1,2. (48)

Expansion of J functionally about {v) leads to the series:

T V) =T + 7

o o
*V) +=J ‘ w#xv' vV, 4. =0. (49)
w2t
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Since J vanishes for any v/, all its derivatives vanish too, which leads to a set of successive linear differential
equations with constant coefficients:

=0. (50)

The first term (zero order) of equation Eq. (50) is the homogeneous beam where v = (v ), which yields:

J(v) =09 —pu0=o. (51)

X, XXXX

U and »® are the mode shapes and natural frequencies for the homogeneous beam. Expanding
functionally the natural frequency and the mode shape as a Fréchet about <{v), we have:

_ o({v}) . i 1 i
a({v}) = w—(o) =14 (D’Vzi M*Vll + vall"]z " * >}<V”1v/]2 oy (52)
i 1 1L
Ulx,{v}) = U((v) + U’Vli * V') +§U,V’i"é .V v 4 - (53)
For later convenience, we choose to normalize U, to:
(U 1, =1. (54)
The first functional derivative of J is:
y (R0Us) oty ~ P00
=J ;=< =0. (55)

Ve T T RelUsina) oy — B 077U,

Substitution of <{v) in Eq. (55) and rearranging leads to:

(1 H _ oM
va’i,xxx‘c '[ UW’I _fxv’i’ (56)
where
Ux,K (00:¢
vl =U, ={U 1} , oV=o, {w 1} , (57)
M ) ) "1 “Hw U5 )
2846V U — <5“1 U(XO)W) (K)
(1) R X
f“’i - 47700 (1) (38)
p Ufy(éxx1 / (m) + 2%)
Following the Fredholm Theorem, wsll) can be extracted as:
) YK
| 1 Yl »X1X] /ﬁ
o =3 (59)

) (U(O)) /<m>

To solve Eq. (56), fy () is convoluted with the Green Function associated with the beam’s homogeneous
equation (Eq. (51)) . Thus, the solution of Eq. (56) is:

0
a ) _U'(Vl)’xlxl lex,xlxl/(K>
UL =Gexfli =1 , : (60)
i ! BUQ Gy [ (m)
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The second functional derivative of J is:

_ 4 - (=2
J,v}v% = (Kxe,XX),xxKle = Be(@ Ux),Kle’ (61)
J,v%v% = kx Ux,xxm1m2 - ﬁ4 (n_’lxa-)2 UX)J”I’"Z’ (62)

= d( - 2
J,v}v% = (K\ Ux~xx),,xxK11n2 —B (mxa) U’”) Kmy (63)

Substitution of {v) in Eqgs. (61)—~(63) and rearranging yields:

U - f(Z)A . (64)
w’l v]2 LXXXX xv’1 \/2 xv’1 v]2
where
1 1
2 2 _
=-U ; , W, ==z, , 65
w’lv/2 2 X’VIVIQ ") v’lv/2 2 ’VIVIQ W 65)
| 200", + @'l U
R L L B O 66
fxv}v; (K) ( XX xvé,xx) . ﬁ +2(Di21)v% UECO) > ( )
1
U <25xxlca(vl2)/( )+ 0a) + 208 >
5 2 v 1%2
fijzvz = ﬁ4 " ) > (67)
12 +<5xx1 / (m) + 2a')v%> U“%
(), 20 ey oty fom)

W xx 1 2 )

12, = | &
M g (5xx1@(11>/< )+ 6060 1 200 )
V2 1 "2 1"2

Using the Fredholm Theorem and Egs. (59)-(60), the second functional derivatives of w can be extracted:

0 0 G
2) _ Ugcl),xlxl U(‘Cz) X9 X) 4ﬁ XXX X2 X1 X] 69
D T =2 | Lyo  go ; (69)
12 8B X1,X1X] 7 X2,XpX)
O pyo
2 _ "X " x _ (0) 7/(0)
3 T 8 (m)? (48" Gy — 300 UY). (70)
0) 77(0) 4
B L BT (U /5 - ) (71)
BT A (U B Gramioim )
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Using the Green Function calculated for the first perturbation order, the solution for the second functional
derivative of U is obtained as:

©) lex,xlxl zexl,xzxlexl
2 _ “ X% ) (72)
o TR | = (U900) (Gak Gugznnny)
@ B4 U(O) (GXIX GX2X] )
v, =—22|p 2 - 00006, |, (73)
xv%v% ( )2 _ (U(‘col)) (Gcfx * zeé) Xy Xy XX

U(Z) 2 = i le.x,x1x1ﬁ4Gx2xl,x1x1 . (74)
2

+ 4 2
_ﬂ (USCOI),xlxl) (Gfx * GXZ(:)

4. The deterministic case

In this section, the FPM solutions for the natural frequencies and mode shapes of rods and beams with
varying material and geometrical properties are compared with exact solutions for some particular cases. All
comparisons are up to the second-order approximation, namely:

wrem = 0 + (’U,(xll) * 0y + w(le)xz * %005, (75)
Uppn = UY + Ugcl)gl * 0y + U,(rzx)lxz * 0,05, (76)

where 6 is the non-uniform property. In addition, all functional derivatives are calculated at {8}, defined as:
@) =0, % 1. (77)

In the deterministic case Eq. (77) is only one way of defining {6 ). For our comparison we use the relative
error measures as:

2

— 1 xact —

EI'I'OI'(U) = (Ux gFPM) * X’ Error(w) = ‘M’. (78)
Ux * 1, Mexact

Elishakoff [5] found exact solutions for particular cases by the inverse method, namely, finding E, and o
such that the mode shape is a pre-selected function. Postulating U, and E for a clamped—clamped (C-C) rod
as:

1
Uy=x-3x>+2x, E.=3(E) (g—l—x—xz), (79)
where x is an axial coordinate normalized to L, the exact frequency reads:

1 /12
Wexact = Z ? (80)

Using the homogeneous values of a C—C rod (see Appendix A, Egs. (A.1) and (A.2)) we calculate the
functional derivatives of w (Egs. (28) and (40)). Then, integrating the first and second functional derivatives
with respect to E'| and F'|E',, respectively, we obtain:

45 — 135(kn)* + 157(kn)*
160v/3(kn)’ L /p

, (81)

WFPM =
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where k is the mode number. Setting k = 2 in Eq. (81) for the second mode shape, we obtain:
Error(w) = 0.537%, Error(U) = 1.16%. (82)

For a non-homogeneous beam, Elishakoff and Candan [6] found again, by the inverse method, closed-form
solutions to the dynamic response of a beam in which E| is polynomial. For a simply-supported (S—S) beam
where U, and E, are:

15

U, =x—2x>+x%, Ex:§(E)(3+3x—2x2—2x3+x4), (83)
the exact fundamental frequency is:
1 /360
Wexact = Z 7 (84)

Using the homogeneous values of an S—S beam (Egs. (A.5) and (A.6)) we calculate the functional derivatives
of w (Egs. (59) and (69)). Then, integrating the first and second functional derivatives with respect to £’y and
FE'|E», respectively, the FPM result for k = 1 is:

| 255150 + 4866757 + 3694951* + 3242857°
w = T
N 7447050 L Jp | +12565427° — 2268007 tanh (3 )

(85)

The relative error for the natural frequency in this case is 0.0011%.

In addition to its high accuracy, the FPM yields solutions for any mode number—in contrast to the method
of Refs. [5,6], where new calculations are needed in order to obtain solutions for higher frequencies. Moreover,
change of the boundary conditions or of E\ in the FPM does not necessitate re-solving the problem again. All
that is need is to convolute the new morphology deviation with the functional derivatives calculated under the
new boundary conditions. For example, for a clamped free (C—F) rod with:

Ui=x—3 Ec=S(B2+2-), (86)

the exact fundamental frequency is:
1 /6

Wexact = Z ; (87)

Calculating the same functional derivatives of @ (Egs. (28) and (40)) using the homogeneous values of C—F
rod (Egs. (A.3) and (A.4)), we obtain:

1 < —4675840 + 41868807 — 1326245n2>

S — 88
51840m5L/p \ +705607 + 2580m* + 5194876 (88)

WFPM =
The relative error for the natural frequency in this case is Error(w) = 0.372%.

Table 1
Relative error between the exact and FPM natural frequencies for a non-homogeneous C—C rod with variations 4, = sin?(1+x) and
A= (1+x)*

A, = sin’*(1 +x) Ac=(1+x)*
Mode WExact WEPM Error (w) % WExact WEPM Error () %
1 2.9781 2.9791 0.0324 3.1334 3.2456 3.58
2 6.203 6.2039 0.013 6.2789 6.2863 0.119
3 9.3715 9.3724 0.009 9.4219 9.4198 0.0217
4 12.5265 12.5273 0.005 12.5642 12.5608 0.0273
5 15.6761 15.6767 0.004 15.7062 15.7028 0.022
6 18.823 18.8236 0.002 18.8481 18.8449 0.017
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0 0.2 04 0.6 0.8 1

Fig. 1. Exact mode shape and zero, first and second-order FPM mode shapes for a non-homogeneous C—C rod with A, = (1 +x)*

, zero order: ----- , first order: ————, second order: — —, exact.
3

2.5
>
5 "
T 5

1.5 ¢ f
3 1 : \
o
& ! i\

Mode Number —k

Fig. 2. Response of the FPM natural frequency for a non-homogeneous C—C rod Eq. (89) relative to the corresponding homogeneous one
Vs. mode number. Note that o corresponds to wave length heterogeneity: —A—, o« = 30: ---- #----, o =55 —H—, o = 90.

Kumar and Sujith [3] used appropriate transformations to Eq. (13) with varying cross-section and constant
p and E. Analytical solutions were obtained for polynomial and sinusoidal variations in terms of Bessel and
Neumann functions. Table 1 shows the frequency relative error between the exact and FPM results for the first
6 modes, for the variations A, = sin*(1 +x) and A, = (1+x)*. Although the last variation changes sixteen
times between the endpoints, this example also shows good convergence. It can be seen that since the wave
length of this particular heterogeneity is of the order of one, the first mode is the most affected relative to the
homogeneous frequency. Fig. 1 shows the convergence between the FPM and exact mode shapes
corresponding to the fourth natural frequency. It was found that for this case the FPM zero-order term
starts with Error(U) = 47% and reaches Error(U) = 9% when using three terms. This example demonstrates
that even for large deviations the FPM converges rapidly to the exact solution as higher orders are considered.

In order to obtain insight into the effect of heterogeneity on the frequency modes consider the variation of E
in a C-C rod:

E.=1+0.1sin(1 4 ax), (89)

where o is a non-dimensional parameter which controls the wave length of the heterogeneity. Fig. 2 shows the
response of the FPM non-homogeneous natural frequency (calculated up to the second order), relative to its
homogeneous counterpart. It is seen that the strongest response corresponds to the mode with wave length
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equal to the heterogeneity’s characteristic distance. For example, when o = 30 the heterogeneity wave length
equals 5, consequently the strongest response is obtained in the fifth mode. This result demonstrates the
possibility of identifying heterogeneity by its sensitivity to high frequency modes. The same effect is found in
the stochastic case as well.

5. The stochastic case

The strong advantage of the FPM is the ability to find for an unknown property (here, natural frequencies)
analytical solutions of statistical characteristics such as the mean and variance. The processes for finding these
values for a C—C rod and an S-S beam with a spatially varying modulus are demonstrated and the results
examined (more complicated boundary conditions can be treated similarly). Then, some results for cross
section variation in C—C rods are presented and discussed.

It is assumed that the random field is statistically homogeneous, therefore:

(0y) = (0) = Constant. (90)
The variance and normalized variance of 0, are:
2
2 _ 2\ 2N 2 =2_ 9
7= {(0)7) = (@) -0 cj= . o1

For a statistically homogeneous morphology, the two-point correlation function of 6 is defined as:

/ / / / / /
<0X1 9X2> = <9x1 (X'1+I’l)> = <9x10(x17h)>9 (92)
where x; and x, are normalized axial coordinates (to L), and / is the absolute distance between them. We
define an effective “correlation length (distance)” A as:

[0 = 2{(0) =73 ©3)

which is the normalized spacing (to L) of a pair of points beyond which the correlation in 6 is small. In grainy
materials, 4 is linearly related to the average grain size. It is also relevant to other areas of analysis that will be
described later. The above definition of A is not unique, and other “sizes” can be defined. A convenient
correlation function commonly used has an exponential form:

, h |xo — x1]
!y — 52 Z) = 52
(0,0,,) = a5 exp( i) =0y exp( 7 > 94)

Although the FPM is not restricted to this shape only, Eq. (94) will be used throughout.
5.1. Modulus variation in rods and beams

We consider E as a statistically homogeneous random field with mean ¢ E) and variance ¢”z. Averaging
Eq. (15), using the equality { F'> = 0 and rearranging, an analytical expression for the natural frequency
mean is obtained as:

(@) = 0@ + wgﬁk‘z xx(E\E)) + 0(<E’3>> = + Aw + 0(<E/3>). (95)

Using Eq. (91), the natural frequency variance reads:
o = ol x (B Ey) + o) + O((E”%)) = Var@) + 0((E")). (96)

Apparently, up to the approximation of ( E*Y, (w» depends on the homogeneous frequency (E = { E))

and on the second functional derivative of w convoluted with the two-point correlation ({ E',E'5 ), while 62,

depends on the first functional derivative of @ convoluted twice with { E'1E’» > . Therefore, approximations for
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the kth frequency mode are explicitly obtained once we have found the first and second functional derivatives.
It is advantageous to normalize the kth frequency variance and average by the corresponding frequency mode
of the homogeneous case:

Ui _ Var(a))+ 0(<E’3>) = Var(®) + 0(<E’3>),

(00)

(@y= 2= s o((E%)). 97)

»©

Calculating the first and second functional derivatives obtained in Section 3 and using the homogeneous
solutions w®, U, and G, presented in Appendix A, we obtain for the C—C rod:

Var(@) = cos’(knxi) * (E| E,) * cos*(knx), (98)
AG = cos(kmx)) % ((E1E3) Gy, xyx, ) % COs(kmx) — Varz(‘“) : (99)
and for the S-S beam:
Var(@) = sin®(knx;) * (E} E5) * sin®(knx,), (100)
Var(m)

Ad = —sin(knxy) % ((E1E5)Gryxy xyxoxy g ) * Sin(kmxs) — . (101)

2

Integration of Eqs. (98)-(101) using the two-point correlation function Eq. (94), yields analytical
approximate expressions for the normalized variance and mean of w as functions of the correlation length A.
For the C—C rod we obtain:

82(1 + 2(kmay)’
G2e /%), 3 — 84+ 20(kn i)
401 + 4(kmi)?)? | +eV4| =32(km)*)? ’
+32(kni)* — 32(km)*2°

Var(d) = (102)

16(2% + 4(km)* 2% 4 12(km)*2° + 16(km) 18

—4 4 117 — 4(4 + 11(kn)*)2* + 88(km)* 2

—32(km)*(2 + 5(km)*)2* , (103)
+240(kn)* 2> — 192(1 + (kn)*)(km)* 18

+256(km)® 57 — 256(km)°A%)

=2 —1/2
Fe1/

AG=— B¢ T
C TR0 + ki) | e

and for the S-S beam:

—3 = 20(knA)?
—32(kn)* + /4| +32(kn)* (2 — 1)* 2 , (104)
+32(kniy* — 32(km)* 2’

=2 o~ 1/7
—Gre” /%)

Ve =40 4tk )
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8¢~V (km)* 25(7 + 12(kn2)?)
2+ J 4 24(knhy* + 9(km)* 13
+110(kni)* + 46(km)* 7>
—56(km)* 78 + 316(knl)®
+92(km)A” — 96(km)° A8
S +856(knl)® — 88(km)8 10

A — "—E23 1 —448(km)® 210 + 1584(kn )" , (105)

4(1 + 4(kmh)) +7(1 FaGeni)' | —2240km) 02" — 768(km)'0 212
+1792(kn2)'* 4+ 128(km)'2 213
—896(km)'? /M + 2816(kni)'*
+1539(km) A1 — 1536(km)14 71
+(krl)(1 4 4(knl)*)
(1 4 4(kn2)*(1 4 42)) coth(kn))

While Hoshiya and Shah [7] and Ganesan and Shah [8] used only zero- and first-order terms and obtained
natural frequency means which are identical to those for the homogeneous case, in this study the heterogeneity
effect becomes apparent as more terms are taken into account. Eqgs. (102)—(105) are plotted for different
frequency modes in Fig. 3. The logarithmic scale helps in spanning the whole range of 1. Apparently, the
heterogeneity effect on the mean natural frequencies is minimal for the fundamental mode, and may serve as a
design tool. In addition, the same response to heterogeneity is observed for all modes, except for the frequency
mean at A< 1. It can be seen that the higher frequency modes are affected more as /4 decreases, which means
higher modes can “‘feel/see” the heterogeneity. Therefore, the same sensitivity to heterogeneity found in the
deterministic case is exhibited here too.

Next, we wish to examine the effect of two different correlation functions on the frequency mean. For
example, consider the function:

— 2
(E'x\E'x2) = 6% exp —f(xz xl) : (106)
4\
025
ez VAT e
g 0.15
B
= 041
>
0.05
4 -3 -2 1. 0 1 2
c
02
5 015
B
5 01
-
0.05
—
4 -3 -2 1 0 1 2

log(A)

Fig. 3. (a) Rod’s normalized frequency variance. (b) Rod’s normalized frequency average. (c) Beam’s normalized frequency variance. (d)
Beam’s normalized frequency average: ——, k= 1: ----- k=2 —— k=5 ——k=10.
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Fig. 4. Rod’s fundamental frequency average calculated with the two point correlations: Eq. (94) —, Eq. (106) ——.

which describes a rather smooth change in E between neighbor grains. Note that choosing a different two-
point correlation will not complicate the FPM. Eqgs. (106) and (94) have the same correlation length, yet the
first has higher correlation values in the region 4> 0.1. Consequently, as seen in Fig. 4, the rod’s fundamental
frequency mean is considerably different, especially in the region 4>0.1.

For better insight into the mean and variance trend, it is worth looking at two extreme values of /.

5.2. Large correlation lengths

Focusing on the range where /4 is very large (A> 1), the two-point correlation Eq. (94) can be written as:

lxs — xi| vy — x|
—_—— =l - 107
Thus, when 2> 1 an analytical approximation can be obtained as:
- 2 - o —xil .~
Var(@d) ~ 6% <w§}l> * <1 - 2}‘> * sz’), (108)

Ad

12

5 (@;?xz **<1 —@)) (109)

Using Egs. (108) and (109), the approximations for Egs. (102)—(105) are:

- G2 1/1 3
Var(d)l;s1 = TE (1 7 (3+ 4k27'c2>>’ (110)
- G 1/2 3
ACO|/1>1=—8E<1+;L<3—4TC2k2>), (111)
- 62E 1 15 1
Var(a))|i>1 IZ 1+1 m—g s (112)
- a7 1 3

Physically, a perfect modulus correlation length (1— c0) means highly uniform material properties or
alternatively an ensemble of rods or beams in which the modulus is homogeneous but may differ from one
realization to another. Knowing that the homogeneous frequency is proportional to the modulus square root,
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the exact normalized frequency variance and mean in this region are therefore equal to the normalized
variance and mean of the modulus square root, respectively:

(@) = (WE), (114)

Gy =G (115)

This result is true for both beams and rods, and means that the frequency mean converges asymptotically to
the exact solution of a homogeneous case with E;, = <\/E>2:

(0)]1500 = 0l = O|(VE). (116)
Using Taylor series for expressing Eqgs. (114) and (115) in terms of statistical information on E, we obtain:
1
N o~ - =2 /3
(@) = SGE—i—O(E ) (117)
G2 3
ol = O(E’ ) (118)

These results are confirmed by Fig. 3 and by Egs. (110)—(113). The results show that in this region knowing
the modulus statistical data are approximations to the frequency mean and variance. This means that the
statistical data needed for the exact frequency mean and variance are the mean and variance of \/ E. Therefore,
the modulus statistical data are the information needed for the exact mean and variance of the frequency
square. Denoting f = w? up to a third-order approximation of ( E”*) the following relations between w and
f are true:

Var(f) = 4Var(a), (119)
AB = 2Ad + Var(d). (120)
Thus, for 2> 1 the mean and variance of § will converge to the values:
Af — 0, (121)
Var(f) — 6%. (122)

This shows that { ) converges asymptotically to the exact solution of a homogeneous case with E;, = (E).
5.3. Small correlation lengths

The range where 4 is very small (1< 1), means that the statistical correlation is limited to a small interval. As
A—0, all rods and beams will vibrate at the homogeneous natural frequency. Therefore, it is expected that the
frequency variance will converge to zero. To obtain an analytical result for small A, we define the small
parameter:

h=|x1 = xal, (123)
which permits Taylor expansion of Eq. (96):

_, = 1
6., = o) 5 (E\ E3) <w§11)+w(1) h+ ol h2+~~->~ (124)

X1,X1 2 X1,X1X]

Taking the first term of the expansion we have:

Var(w) = (a)(l))z s« #(E|E}). (125)

x|

Calculating Eq. (125) for both the rods and the beams, we have:

_ 3._
Var(@)|, ., = ng. (126)
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Fig. 5. Rod’s normalized frequency average calculated by perturbation of S vs. log(d): —, k=1t ------ L k=2 —— k=5
——, k=10.

In addition, as 24— 0 Egs. (103) and (105) converge to:
- 1
AC()M_)O = —EO'E. (127)
Eqgs. (126) and (127) are not confined to the exponential case, but hold for all morphologies with the same 4.
It is clear that when 41— 0, the effective uniform property is S = 1/E. Thus, the exact solution corresponds to:

nk

= = 128
wls, = 0l NS (128)
Using a Taylor series for expressing {.S) in terms of statistical information on E, we obtain:
1 1 >
1= (5) = gy (1=t 4, (129)
Substitution of Eq. (129) in Eq. (128) yields:
nk 1,

It is seen that Eq. (130) verifies the values found through Eq. (127). Hence, <{.S) is the information needed
for obtaining the exact solution at 21— 0. Fig. 5 shows a rod’s normalized frequency mean calculated through
perturbation of S on a log(/) scale. It can be seen that as A— 0, the solutions for all modes converge to zero
(homogeneous frequency) as expected. Moreover, higher frequency modes are affected more as 1 decreases,
which means higher modes are sensitive to heterogeneity.

The above analysis demonstrates that the frequency accuracy depends on the available stochastic
information (S, E or \/E), on the size of A, on the function about the perturbation is executed (£ or S) and
whether w or »” is of interest.

5.4. Effect of cross section variation in rods

Since the cross section parameter appears in both terms of the governing Eq. (13), and especially in view of
the fact that homogeneous rods with different cross sections have the same natural frequencies, it is of interest
to analyze the frequency variance and mean for varying cross section and uniform E and m. Note that Eq. (94)
is used as the two-point correlation function.

5.4.1. Variance
The normalized frequency variance plotted on a log(4) scale for the three first modes is shown in Fig. 6. This
plot is of special interest, since in it the variance is exactly symmetric about the maximum point, which is not
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Fig. 6. Rod’s normalized frequency variance calculated by perturbation of 4 vs. log(2): ——, k=1:------ L k=21—— k=5

the case for a linear plot. This phenomenon cannot yet be explained and is currently being studied. Fig. 6
shows also that the normalized frequency variance approaches zero at very small and very large 4 values for all
modes, which means convergence to the solution of a homogeneous rod. This result fits the fact that the
frequency of a homogeneous rod does not depend on the cross section. It can also be seen that the first mode
serves as an upper bound for all higher modes, a fact of great importance to the designer who only needs to
calculate the variance of the first mode, knowing that the response of all higher modes is smaller. The
maximum variance, as well as its corresponding 4 value, decrease as the mode number increases. This means
that for high frequency modes, no matter how strong the cross section heterogeneity, the frequency variance
will always be small. Fortunately, the maximum value of the normalized frequency variance and its
corresponding A value can be found analytically, as:

1
Mo = em (131)
Vafz(w) _ exp(—2kn)2+ 2km — 1 . (132)
G4 W 8k-n?
"Max

Eq. (131) is directly related to the first cross section functional derivative through:

(A).4, |, = cos@mkx1) = cos (xl /zg’;{lx). (133)
It can also be seen that for higher modes (k> 1) Eq. (132) reduces to:
Var(o /l(k)
D) Atax (134)
G 2
“Max

Eq. (133) brings out two important inherent characteristics of the first functional derivative. For the two-
point correlation used, it reveals the correlation length in which the frequency variance reaches its maximum.
Once the functional derivatives have been obtained, they are applicable for any morphology; thus, they act as
the heterogeneity Green Function. For example, consider the case where the cross section morphology has a
Dirac change at point x;:

A} = 0y, (135)
the second term (first order) in the frequency series will then obviously be the first functional derivative at
point x;:

* Oxx, = COS(2mkx1) * xy; = COS(2mkX). (136)
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5.4.2. Mean

The normalized frequency mean which takes into account the cross section variation is shown in Fig. 7. In
contrast to the frequency variance results, we see that here the first mode is a lower bound for all higher
modes. Looking again at 1> 1, we see that all modes converge to zero, and coincide with the homogeneous
solution which is independent of the cross section. This fits both the physics and variance results. Moreover,
higher frequency modes (k>10) reach this limit very quickly, meaning that they are less affected by
heterogeneity. This result is also supported by the frequency variance results (Fig. 6). When 41— 0, all modes
converge to:

1

Using an elementary expansion (three terms) for a homogeneous effective property (say 6(A4)) in terms of
cross section statistical data, it can be proved that:

1 1
Ay = —=6%, 0=—. 138
|<9> P A \/Z ( )
0
-0.1
DE -0.2
]
< 03
-04
-3 -2 -1 0 1
log(d)
Fig. 7. Rod’s normalized frequency average calculated by perturbation of 4 vs. log(d): ——, k=1: ----- L k=21 —— k=5 ——
k= 10.
0
-01
~ne —0.2
K
13
< _o03
-04
-0.5
-3 -2 -1 0 1
log(A/k)
Fig. 8. Rod’s normalized frequency average calculated by perturbation of A4 vs. log(A/k): —— k=1:------ k=21 — k=5 ——

k=10.
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It shows that for small values of A the important statistical data property is 1 /\/ A. This result is in conflict
with intuition, because as A—0 there is an ensemble of rods which in effect vibrate with the same
homogeneous frequency, although the latter does not depend on the cross section. This unexplained result is
still being studied. Fig. 8 shows that when Aw is plotted on a log(A/k) scale all curves converge. This result
indicates that all modes will have the same response to the cross section heterogeneity as long as the mode
wave length (k) is of the order of A.

6. Conclusions

Several important advantages of the FPM are shown:

1. The FPM is analytical and provides a physical insight into the effect of heterogeneity of each frequency
order.

2. The functional derivatives are generic results of solving each perturbation order and do not depend on
prescribed shape functions.

3. Once the functional derivatives have been found, the solution for any morphology is obtained by direct
integration without re-solving the differential equation for each heterogeneity separately. Therefore, the
functional derivatives serve as the Green Function for Morphology.

4. The same functional derivatives can be used for reliability analysis. It should be mentioned that functional
derivatives are already available as routines in commercial programs such as Mathematica.

For the deterministic case, we compared the FPM natural frequencies and mode shapes with exact solutions
for a number of non-uniformities in material and geometry. It is shown that the relative error is small even for
large variations. In addition, the natural frequencies of both the deterministic and stochastic cases are sensitive
to heterogeneity. The strongest sensitivity is observed when the frequency mode has a “‘wave length” of the
order of the heterogeneity characteristic length A.

For the stochastic case, we obtained analytical approximate solutions for the mean and variance of the
natural frequencies. The solution converges to its exact counterparts at both morphology regions 41— 0 and
A— o0. It was also shown that the solution accuracy depends on the size of 4. In addition:

1. The stochastic information used/given. Namely, at A> 1 the stochastic information on \/ E is needed for
exact solution of (). However, in the same / region information on E is required for the exact value of
(o).

2. The frequency accuracy are strongly depends on the material property (E or S = E~') about which the
FPM is executed. It was shown how S is the appropriate property for A< 1 and \/E is for A>1.

For future study it is important to find the natural frequencies for non-uniform 3-D structures as well as for
structures with non-negligible damping.
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Appendix A

Homogeneous natural frequencies and mode shapes and the Green Function for various boundary
conditions are introduced.
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C-Crod
2
U§O)}X=0 = USCO)|X=1 = 0’ (U(O)) * 1x = 19

* Al
U&O) = /2sin(knx), p=kn. 1)
1 2kmnx cos(knx) sin(kné) + sin(kmx)

222\ Qkn(—1+ &) cos(kné) — sin(kné) |’ X<e

1 [ 2knx(—1+ x) cos(knx) sin(kn&) (A.2)
222\ + sin(knx)Qkn cos(kné) — sin(kne) |° >¢

C-F rod
— O’

XX lx=1 —

U o = UL (UO) 51, =1,

U" = /2sin(px), B = @ (8.3)
— 2k — V(& — 1) cos((2k — )né/2)

4sin((2k — 1yné/2)? sin((2k — Dmx/2) + sin((2k — )né/2)

(7 — 2k (cos(2k — Dnd) — 1) <(2k — Dmxcos((2k — 1)nx/2)> x<¢

+ sin((2k — 1)nx/2) (A4)

202k — Dn(x — 1) cos((2k — 1)mx/2)
sin((2k — 1)né/2) + 2 sin((2k — 1)mx/2) x>

(7= 260"\ (2 — 1y cos((2k — Dm/2) + sin(2k — D)

S—S beam

2
uO| _, = U9 =00, =00 _ =0 (UD) xl,=1,

XXX x=0 XXX | x=

A5
U&O) = /2sin(knx), p=kn. (8.5)

—2knx cos(knx)sin(kné) 4+ (—2kn(—1 + &) cos(knl)
— +3sin(kné)) sin(kmx)

4km +2knesch(krn) sinh(kn(—1 + &)) sinh(kmx)

G = —2kn(—1 + x) cos(knx) sin(kn&) (A.6)
+(—2kn& cos(knf) + 3sin(kné))sin(knx) |, x>¢.

4kt . .
+2kncsch(kn) sinh(kn(—1 + x)) sinh(kn&)
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